3.12.51 \(\int \frac {x^3 (a+b \arctan (c x))}{d+e x^2} \, dx\) [1151]

3.12.51.1 Optimal result
3.12.51.2 Mathematica [A] (verified)
3.12.51.3 Rubi [A] (verified)
3.12.51.4 Maple [A] (verified)
3.12.51.5 Fricas [F]
3.12.51.6 Sympy [F]
3.12.51.7 Maxima [F]
3.12.51.8 Giac [F]
3.12.51.9 Mupad [F(-1)]

3.12.51.1 Optimal result

Integrand size = 21, antiderivative size = 361 \[ \int \frac {x^3 (a+b \arctan (c x))}{d+e x^2} \, dx=-\frac {b x}{2 c e}+\frac {b \arctan (c x)}{2 c^2 e}+\frac {x^2 (a+b \arctan (c x))}{2 e}+\frac {d (a+b \arctan (c x)) \log \left (\frac {2}{1-i c x}\right )}{e^2}-\frac {d (a+b \arctan (c x)) \log \left (\frac {2 c \left (\sqrt {-d}-\sqrt {e} x\right )}{\left (c \sqrt {-d}-i \sqrt {e}\right ) (1-i c x)}\right )}{2 e^2}-\frac {d (a+b \arctan (c x)) \log \left (\frac {2 c \left (\sqrt {-d}+\sqrt {e} x\right )}{\left (c \sqrt {-d}+i \sqrt {e}\right ) (1-i c x)}\right )}{2 e^2}-\frac {i b d \operatorname {PolyLog}\left (2,1-\frac {2}{1-i c x}\right )}{2 e^2}+\frac {i b d \operatorname {PolyLog}\left (2,1-\frac {2 c \left (\sqrt {-d}-\sqrt {e} x\right )}{\left (c \sqrt {-d}-i \sqrt {e}\right ) (1-i c x)}\right )}{4 e^2}+\frac {i b d \operatorname {PolyLog}\left (2,1-\frac {2 c \left (\sqrt {-d}+\sqrt {e} x\right )}{\left (c \sqrt {-d}+i \sqrt {e}\right ) (1-i c x)}\right )}{4 e^2} \]

output
-1/2*b*x/c/e+1/2*b*arctan(c*x)/c^2/e+1/2*x^2*(a+b*arctan(c*x))/e+d*(a+b*ar 
ctan(c*x))*ln(2/(1-I*c*x))/e^2-1/2*d*(a+b*arctan(c*x))*ln(2*c*((-d)^(1/2)- 
x*e^(1/2))/(1-I*c*x)/(c*(-d)^(1/2)-I*e^(1/2)))/e^2-1/2*d*(a+b*arctan(c*x)) 
*ln(2*c*((-d)^(1/2)+x*e^(1/2))/(1-I*c*x)/(c*(-d)^(1/2)+I*e^(1/2)))/e^2-1/2 
*I*b*d*polylog(2,1-2/(1-I*c*x))/e^2+1/4*I*b*d*polylog(2,1-2*c*((-d)^(1/2)- 
x*e^(1/2))/(1-I*c*x)/(c*(-d)^(1/2)-I*e^(1/2)))/e^2+1/4*I*b*d*polylog(2,1-2 
*c*((-d)^(1/2)+x*e^(1/2))/(1-I*c*x)/(c*(-d)^(1/2)+I*e^(1/2)))/e^2
 
3.12.51.2 Mathematica [A] (verified)

Time = 0.28 (sec) , antiderivative size = 475, normalized size of antiderivative = 1.32 \[ \int \frac {x^3 (a+b \arctan (c x))}{d+e x^2} \, dx=\frac {-2 b c e x+2 a c^2 e x^2+2 b e \arctan (c x)+2 b c^2 e x^2 \arctan (c x)+i b c^2 d \log (1+i c x) \log \left (\frac {c \left (\sqrt {-d}-\sqrt {e} x\right )}{c \sqrt {-d}-i \sqrt {e}}\right )-i b c^2 d \log (1-i c x) \log \left (\frac {c \left (\sqrt {-d}-\sqrt {e} x\right )}{c \sqrt {-d}+i \sqrt {e}}\right )-i b c^2 d \log (1-i c x) \log \left (\frac {c \left (\sqrt {-d}+\sqrt {e} x\right )}{c \sqrt {-d}-i \sqrt {e}}\right )+i b c^2 d \log (1+i c x) \log \left (\frac {c \left (\sqrt {-d}+\sqrt {e} x\right )}{c \sqrt {-d}+i \sqrt {e}}\right )-2 a c^2 d \log \left (d+e x^2\right )+i b c^2 d \operatorname {PolyLog}\left (2,\frac {\sqrt {e} (i-c x)}{c \sqrt {-d}+i \sqrt {e}}\right )-i b c^2 d \operatorname {PolyLog}\left (2,\frac {\sqrt {e} (1-i c x)}{i c \sqrt {-d}+\sqrt {e}}\right )+i b c^2 d \operatorname {PolyLog}\left (2,\frac {\sqrt {e} (1+i c x)}{i c \sqrt {-d}+\sqrt {e}}\right )-i b c^2 d \operatorname {PolyLog}\left (2,\frac {\sqrt {e} (i+c x)}{c \sqrt {-d}+i \sqrt {e}}\right )}{4 c^2 e^2} \]

input
Integrate[(x^3*(a + b*ArcTan[c*x]))/(d + e*x^2),x]
 
output
(-2*b*c*e*x + 2*a*c^2*e*x^2 + 2*b*e*ArcTan[c*x] + 2*b*c^2*e*x^2*ArcTan[c*x 
] + I*b*c^2*d*Log[1 + I*c*x]*Log[(c*(Sqrt[-d] - Sqrt[e]*x))/(c*Sqrt[-d] - 
I*Sqrt[e])] - I*b*c^2*d*Log[1 - I*c*x]*Log[(c*(Sqrt[-d] - Sqrt[e]*x))/(c*S 
qrt[-d] + I*Sqrt[e])] - I*b*c^2*d*Log[1 - I*c*x]*Log[(c*(Sqrt[-d] + Sqrt[e 
]*x))/(c*Sqrt[-d] - I*Sqrt[e])] + I*b*c^2*d*Log[1 + I*c*x]*Log[(c*(Sqrt[-d 
] + Sqrt[e]*x))/(c*Sqrt[-d] + I*Sqrt[e])] - 2*a*c^2*d*Log[d + e*x^2] + I*b 
*c^2*d*PolyLog[2, (Sqrt[e]*(I - c*x))/(c*Sqrt[-d] + I*Sqrt[e])] - I*b*c^2* 
d*PolyLog[2, (Sqrt[e]*(1 - I*c*x))/(I*c*Sqrt[-d] + Sqrt[e])] + I*b*c^2*d*P 
olyLog[2, (Sqrt[e]*(1 + I*c*x))/(I*c*Sqrt[-d] + Sqrt[e])] - I*b*c^2*d*Poly 
Log[2, (Sqrt[e]*(I + c*x))/(c*Sqrt[-d] + I*Sqrt[e])])/(4*c^2*e^2)
 
3.12.51.3 Rubi [A] (verified)

Time = 0.76 (sec) , antiderivative size = 359, normalized size of antiderivative = 0.99, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {5451, 5361, 262, 216, 5515, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3 (a+b \arctan (c x))}{d+e x^2} \, dx\)

\(\Big \downarrow \) 5451

\(\displaystyle \frac {\int x (a+b \arctan (c x))dx}{e}-\frac {d \int \frac {x (a+b \arctan (c x))}{e x^2+d}dx}{e}\)

\(\Big \downarrow \) 5361

\(\displaystyle \frac {\frac {1}{2} x^2 (a+b \arctan (c x))-\frac {1}{2} b c \int \frac {x^2}{c^2 x^2+1}dx}{e}-\frac {d \int \frac {x (a+b \arctan (c x))}{e x^2+d}dx}{e}\)

\(\Big \downarrow \) 262

\(\displaystyle \frac {\frac {1}{2} x^2 (a+b \arctan (c x))-\frac {1}{2} b c \left (\frac {x}{c^2}-\frac {\int \frac {1}{c^2 x^2+1}dx}{c^2}\right )}{e}-\frac {d \int \frac {x (a+b \arctan (c x))}{e x^2+d}dx}{e}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {1}{2} x^2 (a+b \arctan (c x))-\frac {1}{2} b c \left (\frac {x}{c^2}-\frac {\arctan (c x)}{c^3}\right )}{e}-\frac {d \int \frac {x (a+b \arctan (c x))}{e x^2+d}dx}{e}\)

\(\Big \downarrow \) 5515

\(\displaystyle \frac {\frac {1}{2} x^2 (a+b \arctan (c x))-\frac {1}{2} b c \left (\frac {x}{c^2}-\frac {\arctan (c x)}{c^3}\right )}{e}-\frac {d \int \left (\frac {a+b \arctan (c x)}{2 \sqrt {e} \left (\sqrt {e} x+\sqrt {-d}\right )}-\frac {a+b \arctan (c x)}{2 \sqrt {e} \left (\sqrt {-d}-\sqrt {e} x\right )}\right )dx}{e}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {1}{2} x^2 (a+b \arctan (c x))-\frac {1}{2} b c \left (\frac {x}{c^2}-\frac {\arctan (c x)}{c^3}\right )}{e}-\frac {d \left (\frac {(a+b \arctan (c x)) \log \left (\frac {2 c \left (\sqrt {-d}-\sqrt {e} x\right )}{(1-i c x) \left (c \sqrt {-d}-i \sqrt {e}\right )}\right )}{2 e}+\frac {(a+b \arctan (c x)) \log \left (\frac {2 c \left (\sqrt {-d}+\sqrt {e} x\right )}{(1-i c x) \left (c \sqrt {-d}+i \sqrt {e}\right )}\right )}{2 e}-\frac {\log \left (\frac {2}{1-i c x}\right ) (a+b \arctan (c x))}{e}-\frac {i b \operatorname {PolyLog}\left (2,1-\frac {2 c \left (\sqrt {-d}-\sqrt {e} x\right )}{\left (c \sqrt {-d}-i \sqrt {e}\right ) (1-i c x)}\right )}{4 e}-\frac {i b \operatorname {PolyLog}\left (2,1-\frac {2 c \left (\sqrt {e} x+\sqrt {-d}\right )}{\left (\sqrt {-d} c+i \sqrt {e}\right ) (1-i c x)}\right )}{4 e}+\frac {i b \operatorname {PolyLog}\left (2,1-\frac {2}{1-i c x}\right )}{2 e}\right )}{e}\)

input
Int[(x^3*(a + b*ArcTan[c*x]))/(d + e*x^2),x]
 
output
((x^2*(a + b*ArcTan[c*x]))/2 - (b*c*(x/c^2 - ArcTan[c*x]/c^3))/2)/e - (d*( 
-(((a + b*ArcTan[c*x])*Log[2/(1 - I*c*x)])/e) + ((a + b*ArcTan[c*x])*Log[( 
2*c*(Sqrt[-d] - Sqrt[e]*x))/((c*Sqrt[-d] - I*Sqrt[e])*(1 - I*c*x))])/(2*e) 
 + ((a + b*ArcTan[c*x])*Log[(2*c*(Sqrt[-d] + Sqrt[e]*x))/((c*Sqrt[-d] + I* 
Sqrt[e])*(1 - I*c*x))])/(2*e) + ((I/2)*b*PolyLog[2, 1 - 2/(1 - I*c*x)])/e 
- ((I/4)*b*PolyLog[2, 1 - (2*c*(Sqrt[-d] - Sqrt[e]*x))/((c*Sqrt[-d] - I*Sq 
rt[e])*(1 - I*c*x))])/e - ((I/4)*b*PolyLog[2, 1 - (2*c*(Sqrt[-d] + Sqrt[e] 
*x))/((c*Sqrt[-d] + I*Sqrt[e])*(1 - I*c*x))])/e))/e
 

3.12.51.3.1 Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 262
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x) 
^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[a*c^2*((m - 1)/ 
(b*(m + 2*p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b 
, c, p}, x] && GtQ[m, 2 - 1] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c 
, 2, m, p, x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5361
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> 
 Simp[x^(m + 1)*((a + b*ArcTan[c*x^n])^p/(m + 1)), x] - Simp[b*c*n*(p/(m + 
1))   Int[x^(m + n)*((a + b*ArcTan[c*x^n])^(p - 1)/(1 + c^2*x^(2*n))), x], 
x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1] & 
& IntegerQ[m])) && NeQ[m, -1]
 

rule 5451
Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e 
_.)*(x_)^2), x_Symbol] :> Simp[f^2/e   Int[(f*x)^(m - 2)*(a + b*ArcTan[c*x] 
)^p, x], x] - Simp[d*(f^2/e)   Int[(f*x)^(m - 2)*((a + b*ArcTan[c*x])^p/(d 
+ e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && GtQ[m, 1]
 

rule 5515
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_ 
.)*(x_)^2)^(q_.), x_Symbol] :> With[{u = ExpandIntegrand[(a + b*ArcTan[c*x] 
)^p, (f*x)^m*(d + e*x^2)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d 
, e, f, m}, x] && IntegerQ[q] && IGtQ[p, 0] && ((EqQ[p, 1] && GtQ[q, 0]) || 
 IntegerQ[m])
 
3.12.51.4 Maple [A] (verified)

Time = 0.41 (sec) , antiderivative size = 503, normalized size of antiderivative = 1.39

method result size
risch \(-\frac {i b d \ln \left (-i c x +1\right ) \ln \left (\frac {c \sqrt {e d}+\left (-i c x +1\right ) e -e}{c \sqrt {e d}-e}\right )}{4 e^{2}}-\frac {i b \ln \left (i c x +1\right ) x^{2}}{4 e}+\frac {i b d \ln \left (i c x +1\right ) \ln \left (\frac {c \sqrt {e d}+\left (i c x +1\right ) e -e}{c \sqrt {e d}-e}\right )}{4 e^{2}}-\frac {b x}{2 c e}+\frac {i b d \operatorname {dilog}\left (\frac {c \sqrt {e d}-\left (i c x +1\right ) e +e}{c \sqrt {e d}+e}\right )}{4 e^{2}}+\frac {i b d \ln \left (i c x +1\right ) \ln \left (\frac {c \sqrt {e d}-\left (i c x +1\right ) e +e}{c \sqrt {e d}+e}\right )}{4 e^{2}}-\frac {i b d \operatorname {dilog}\left (\frac {c \sqrt {e d}+\left (-i c x +1\right ) e -e}{c \sqrt {e d}-e}\right )}{4 e^{2}}-\frac {i b d \operatorname {dilog}\left (\frac {c \sqrt {e d}-\left (-i c x +1\right ) e +e}{c \sqrt {e d}+e}\right )}{4 e^{2}}+\frac {i b \ln \left (-i c x +1\right )}{4 c^{2} e}+\frac {a \,x^{2}}{2 e}+\frac {a}{2 c^{2} e}-\frac {a d \ln \left (\left (-i c x +1\right )^{2} e -c^{2} d -2 \left (-i c x +1\right ) e +e \right )}{2 e^{2}}+\frac {i b \ln \left (-i c x +1\right ) x^{2}}{4 e}-\frac {i b \ln \left (i c x +1\right )}{4 c^{2} e}-\frac {i b d \ln \left (-i c x +1\right ) \ln \left (\frac {c \sqrt {e d}-\left (-i c x +1\right ) e +e}{c \sqrt {e d}+e}\right )}{4 e^{2}}+\frac {i b d \operatorname {dilog}\left (\frac {c \sqrt {e d}+\left (i c x +1\right ) e -e}{c \sqrt {e d}-e}\right )}{4 e^{2}}\) \(503\)
parts \(\frac {a \,x^{2}}{2 e}-\frac {a d \ln \left (e \,x^{2}+d \right )}{2 e^{2}}+\frac {b \left (\frac {\arctan \left (c x \right ) c^{4} x^{2}}{2 e}-\frac {\arctan \left (c x \right ) c^{4} d \ln \left (e \,c^{2} x^{2}+c^{2} d \right )}{2 e^{2}}-\frac {c^{2} \left (\frac {c x -\arctan \left (c x \right )}{e}-\frac {d \,c^{2} \left (-\frac {i \left (\ln \left (c x -i\right ) \ln \left (e \,c^{2} x^{2}+c^{2} d \right )-2 e \left (\frac {\ln \left (c x -i\right ) \left (\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )\right )}{2 e}+\frac {\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )}{2 e}\right )\right )}{2}+\frac {i \left (\ln \left (c x +i\right ) \ln \left (e \,c^{2} x^{2}+c^{2} d \right )-2 e \left (\frac {\ln \left (c x +i\right ) \left (\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )\right )}{2 e}+\frac {\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )}{2 e}\right )\right )}{2}\right )}{e^{2}}\right )}{2}\right )}{c^{4}}\) \(661\)
derivativedivides \(\frac {\frac {a \,c^{4} x^{2}}{2 e}-\frac {a \,c^{4} d \ln \left (e \,c^{2} x^{2}+c^{2} d \right )}{2 e^{2}}+b \,c^{2} \left (\frac {\arctan \left (c x \right ) c^{2} x^{2}}{2 e}-\frac {\arctan \left (c x \right ) d \,c^{2} \ln \left (e \,c^{2} x^{2}+c^{2} d \right )}{2 e^{2}}-\frac {c x -\arctan \left (c x \right )}{2 e}+\frac {d \,c^{2} \left (-\frac {i \left (\ln \left (c x -i\right ) \ln \left (e \,c^{2} x^{2}+c^{2} d \right )-2 e \left (\frac {\ln \left (c x -i\right ) \left (\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )\right )}{2 e}+\frac {\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )}{2 e}\right )\right )}{2}+\frac {i \left (\ln \left (c x +i\right ) \ln \left (e \,c^{2} x^{2}+c^{2} d \right )-2 e \left (\frac {\ln \left (c x +i\right ) \left (\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )\right )}{2 e}+\frac {\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )}{2 e}\right )\right )}{2}\right )}{2 e^{2}}\right )}{c^{4}}\) \(673\)
default \(\frac {\frac {a \,c^{4} x^{2}}{2 e}-\frac {a \,c^{4} d \ln \left (e \,c^{2} x^{2}+c^{2} d \right )}{2 e^{2}}+b \,c^{2} \left (\frac {\arctan \left (c x \right ) c^{2} x^{2}}{2 e}-\frac {\arctan \left (c x \right ) d \,c^{2} \ln \left (e \,c^{2} x^{2}+c^{2} d \right )}{2 e^{2}}-\frac {c x -\arctan \left (c x \right )}{2 e}+\frac {d \,c^{2} \left (-\frac {i \left (\ln \left (c x -i\right ) \ln \left (e \,c^{2} x^{2}+c^{2} d \right )-2 e \left (\frac {\ln \left (c x -i\right ) \left (\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )\right )}{2 e}+\frac {\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )}{2 e}\right )\right )}{2}+\frac {i \left (\ln \left (c x +i\right ) \ln \left (e \,c^{2} x^{2}+c^{2} d \right )-2 e \left (\frac {\ln \left (c x +i\right ) \left (\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )\right )}{2 e}+\frac {\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )}{2 e}\right )\right )}{2}\right )}{2 e^{2}}\right )}{c^{4}}\) \(673\)

input
int(x^3*(a+b*arctan(c*x))/(e*x^2+d),x,method=_RETURNVERBOSE)
 
output
-1/4*I*b*d/e^2*ln(1-I*c*x)*ln((c*(e*d)^(1/2)+(1-I*c*x)*e-e)/(c*(e*d)^(1/2) 
-e))-1/4*I*b/e*ln(1+I*c*x)*x^2+1/4*I*b*d/e^2*ln(1+I*c*x)*ln((c*(e*d)^(1/2) 
+(1+I*c*x)*e-e)/(c*(e*d)^(1/2)-e))-1/2*b*x/c/e+1/4*I*b*d/e^2*dilog((c*(e*d 
)^(1/2)-(1+I*c*x)*e+e)/(c*(e*d)^(1/2)+e))+1/4*I*b*d/e^2*ln(1+I*c*x)*ln((c* 
(e*d)^(1/2)-(1+I*c*x)*e+e)/(c*(e*d)^(1/2)+e))-1/4*I*b*d/e^2*dilog((c*(e*d) 
^(1/2)+(1-I*c*x)*e-e)/(c*(e*d)^(1/2)-e))-1/4*I*b*d/e^2*dilog((c*(e*d)^(1/2 
)-(1-I*c*x)*e+e)/(c*(e*d)^(1/2)+e))+1/4*I/c^2*b/e*ln(1-I*c*x)+1/2*a*x^2/e+ 
1/2/c^2*a/e-1/2*a*d/e^2*ln((1-I*c*x)^2*e-c^2*d-2*(1-I*c*x)*e+e)+1/4*I*b/e* 
ln(1-I*c*x)*x^2-1/4*I*b/c^2/e*ln(1+I*c*x)-1/4*I*b*d/e^2*ln(1-I*c*x)*ln((c* 
(e*d)^(1/2)-(1-I*c*x)*e+e)/(c*(e*d)^(1/2)+e))+1/4*I*b*d/e^2*dilog((c*(e*d) 
^(1/2)+(1+I*c*x)*e-e)/(c*(e*d)^(1/2)-e))
 
3.12.51.5 Fricas [F]

\[ \int \frac {x^3 (a+b \arctan (c x))}{d+e x^2} \, dx=\int { \frac {{\left (b \arctan \left (c x\right ) + a\right )} x^{3}}{e x^{2} + d} \,d x } \]

input
integrate(x^3*(a+b*arctan(c*x))/(e*x^2+d),x, algorithm="fricas")
 
output
integral((b*x^3*arctan(c*x) + a*x^3)/(e*x^2 + d), x)
 
3.12.51.6 Sympy [F]

\[ \int \frac {x^3 (a+b \arctan (c x))}{d+e x^2} \, dx=\int \frac {x^{3} \left (a + b \operatorname {atan}{\left (c x \right )}\right )}{d + e x^{2}}\, dx \]

input
integrate(x**3*(a+b*atan(c*x))/(e*x**2+d),x)
 
output
Integral(x**3*(a + b*atan(c*x))/(d + e*x**2), x)
 
3.12.51.7 Maxima [F]

\[ \int \frac {x^3 (a+b \arctan (c x))}{d+e x^2} \, dx=\int { \frac {{\left (b \arctan \left (c x\right ) + a\right )} x^{3}}{e x^{2} + d} \,d x } \]

input
integrate(x^3*(a+b*arctan(c*x))/(e*x^2+d),x, algorithm="maxima")
 
output
1/2*a*(x^2/e - d*log(e*x^2 + d)/e^2) + 2*b*integrate(1/2*x^3*arctan(c*x)/( 
e*x^2 + d), x)
 
3.12.51.8 Giac [F]

\[ \int \frac {x^3 (a+b \arctan (c x))}{d+e x^2} \, dx=\int { \frac {{\left (b \arctan \left (c x\right ) + a\right )} x^{3}}{e x^{2} + d} \,d x } \]

input
integrate(x^3*(a+b*arctan(c*x))/(e*x^2+d),x, algorithm="giac")
 
output
sage0*x
 
3.12.51.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 (a+b \arctan (c x))}{d+e x^2} \, dx=\int \frac {x^3\,\left (a+b\,\mathrm {atan}\left (c\,x\right )\right )}{e\,x^2+d} \,d x \]

input
int((x^3*(a + b*atan(c*x)))/(d + e*x^2),x)
 
output
int((x^3*(a + b*atan(c*x)))/(d + e*x^2), x)